Magnesium creates cellular energy
Arguably the most important enzymes that magnesium is a cofactor for are the ones that produce cellular energy. These enzymes form a series of pathways (glycolysis, Kreb’s cycle and phosphorylation) that convert organic compounds like glucose into smaller molecules called ATP, or adenosine triphosphate. ATP acts as our main unit of cellular energy.
Every one of our hundred trillion cells manufactures ATP to store and shuttle intracellular energy. ATP stores a tremendous amount of potential energy in the bonds of the second and third phosphate groups. When the cell wants to carry out a function like cellular division or transporting molecules across the cell membrane, it breaks this bond, releasing the energy. We use a tremendous amount of ATP all the time. To get an idea of just how much we use, let’s look at some back-of-the-napkin calculations. (If you’d like to avoid the math, feel free to skip ahead!)
Assume a typical adult needs to eat approximately 2500 calories of food every day. That’s equivalent to consuming 10,460kJ of energy from our food. Let’s also assume all the metabolic pathways that convert food into ATP energy are about 50% efficient. So of the 10,460kJ of food energy we consume, 5230kJ ends up as ATP. One mole of ATP releases around 50kJ of energy in our cells, meaning the body goes through 5230/50 = 104.6 moles of ATP every day. How much is that by weight? One mole of ATP is 507 grams. 104.6 moles x 507 grams/mole = 53,032 grams or 53kg of ATP processed every day.
Our calculations estimate that 53kg of ATP is used every day. That’s a lot of ATP, about three-quarters the body weight of your average adult human! Luckily, humans are really good at recycling and recharging spent ATP (adenosine diphosphate or ADP) through those previously mentioned metabolic pathways. The typical adult only stores about 50g of ATP in the body so each ATP molecule is recycled over a thousand times daily! Since these pathways are magnesium dependent, we need quite a bit of magnesium on hand to fuel a continuous production of ATP.
Insert coin to continue
If you’re still confused about how ATP production works, think of a cell as an arcade. The different functions in your cell are like different arcade games you can play. To play any of these games, you need to insert a quarter. ATP is like that quarter. The cellular respiration pathways that magnesium assists kind of act like change machines, turning larger food compounds like glucose into ATP. A single glucose molecule after going through this change machine can yield up to 36 ATP.